Nota: Cada vez que encuentre la frase " \mathbb{F} es un campo" (o similar), la puede cambiar por "conjunto de los números reales \mathbb{R} ".

RESUELVA ESTOS EJERCICIOS

- 1. Sea $f: S \to T$ una función. Pruebe que f es uno a uno si y sólo si para todos los subconjuntos A y B de S se cumple que $f(A \cap B) = f(A) \cap f(B)$.
- 2. Demuestre el siguiente teorema: Sean \mathbb{F} un campo ordenado, $\emptyset \neq A \subset \mathbb{F}$ acotado superiormente en \mathbb{F} y $\emptyset \neq B \subset \mathbb{F}$ acotado inferiormente en \mathbb{F} . Entonces

$$s = \sup A \Longleftrightarrow \begin{cases} (i) & s \in \mathbb{F} & \text{es cota superior de } A \\ (ii) & (\forall \ x < s) \ (\exists \ a \in A) \ (x < a) \end{cases}$$

$$y = \inf B \iff \begin{cases} (i) & y \in \mathbb{F} \text{ es cota inferior de } B \\ (ii) & (\forall \ x > y) \ (\exists \ b \in B) \ (x > b). \end{cases}$$

- 3. Sean A y B subconjuntos no vacíos de un campo ordenado \mathbb{F} . Suponga que $x \leq y$ para cada $x \in A$ y cada $y \in B$. Suponga que existen sup A e ínf B. Pruebe que sup $A \leq$ ínf B. Además, pruebe que sup A = ínf B si y sólo si para cada $\varepsilon > 0$, existen $x \in A$ e $y \in B$ tales que $y x < \varepsilon$.
- 4. Sean \mathbb{F} un campo completo, $a, b \in \mathbb{F}$ fijos y $A := \{x \in \mathbb{F} : a < x < b\}$. Pruebe que ínf A = a y sup A = b.
- 5. Sean \mathbb{F} un campo ordenado, A y B subconjuntos no vacíos de \mathbb{F} y $c \in \mathbb{F}$ fijo. Se definen los siguientes conjuntos:

$$A + B := \{a + b : a \in A \land b \in B\};$$

$$AB := \{ab : a \in A \land b \in B\};$$

$$cA := \{ca : a \in A\};$$

$$c + A := \{c + a : a \in A\}.$$

Demuestre:

- (a) Si A y B tienen extremo superior en \mathbb{F} , entonces A + B tiene extremo superior en \mathbb{F} y además $\sup(A + B) = \sup A + \sup B$.
- (b) Si c > 0 y A tiene extremo superior en \mathbb{F} , entonces cA tiene extremo superior en \mathbb{F} y además $\sup(cA) = c \cdot \sup A$.
- (c) Si A tiene extremo inferior en \mathbb{F} y c < 0, entonces cA tiene extremo superior en \mathbb{F} y además $\sup(cA) = c \cdot \inf A$.
- (d) Si A y B contienen solamente elementos positivos y tienen extremo superior en \mathbb{F} , entonces AB tiene extremo superior en \mathbb{F} y además $\sup(AB) = (\sup A)(\sup B)$.

- (e) Si A y B tienen extremo superior en \mathbb{F} , entonces $A \cup B$ tiene extremo superior en \mathbb{F} y además $\sup(A \cup B) = \max\{\sup A, \sup B\}$.
- (f) Si A tiene extremo superior en \mathbb{F} , entonces c+A tiene extremo superior en \mathbb{F} y además $\sup(c+A)=c+\sup A$.
- (g) Si A tiene extremo inferior en \mathbb{F} , entonces c+A tiene extremo inferior en \mathbb{F} y además $\inf(c+A)=c+\inf A$.
- 6. Sea A un subconjunto no vacío de P con P el conjunto de elementos positivos de un campo completo, \mathbb{F} . Si A es acotado superiormente, pruebe que $\sup A > 0$. En caso de que A sea acotado inferiormente, demuestre que inf $A \ge 0$.
- 7. Sean \mathbb{F} un campo completo y $A \subset \mathbb{F}$ no vacío y acotado. Si ínf $A = \sup A$, demuestre que A es un conjunto singular, es decir unitario.
- 8. Se define la sucesión de reales por $a_n = \sum_{k=1}^n \frac{1}{k^3}$. Pruebe que $\{a_n\}$ es una sucesión de Cauchy.
- 9. Si $\{a_n\}$ es una sucesión de reales tal que $|a_n a_{n+1}| < \frac{1}{n^2}$ pruebe que $\{a_n\}$ es una sucesión de Cauchy.
- 10. Demuestre que la sucesión $\{a_n\}$ dada por $a_n = \sum_{k=1}^n \frac{1}{k^2 + 2k}$ converge y halle su límite.
- 11. Sea $A \subset \mathbb{R}$ acotado y tal que ínf A > 0. Si definimos el conjunto de los recíprocos de A como $\frac{1}{A} := \{1/a : a \in A\}$, pruebe que este conjunto es acotado superiormente y además

$$\sup(\frac{1}{A}) = \frac{1}{\inf A}.$$

- 12. Sea $A \subset \mathbb{Q}$ acotado superiormente por $s \in \mathbb{Q}$ y acotado inferiormente por $y \in \mathbb{Q}$. Si tanto s como y pertenecen al conjunto A pruebe que $y = \inf A$ y que $s = \sup A$.
- 13. Sea $A=\{a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}:a,b,c\in\mathbb{Q}^*\}$. Pruebe que ínf A=6.
- 14. Sean $x, y \in \mathbb{Q}$ dos racionales positivos fijos con x < y. Pruebe que para todo natural $n \ge 1$ se cumple que $n(x/y)^{n-1} < \frac{y}{y-x}$.
- 15. Sea $\{x_n\}$ la sucesión en \mathbb{R} dada por $x_1 > 1$ y, para $n \ge 1$, $x_{n+1} = 2 1/x_n$. Pruebe que la sucesión es monótona y acotada. Encuentre su límite.
- 16. Pruebe que la sucesión definida por $q_n = \frac{n^2 n}{4n^2 + 2}$ es acotada.
- 17. Sea $q_n = \sum_{k=1}^n \frac{1}{k+n^2}$. Demuestre que la sucesión $\{q_n\}$ converge. ¿Qué se puede afirmar de $\{nq_n\}$?
- 18. Determine si la sucesión $\{\frac{(-1)^n n}{2n+1}\}$ converge o no. Explique.

19. Sea $\{a_n\}$ una sucesión de racionales no nulos tales que

$$\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=L<1.$$

Pruebe que $a_n \to 0$. En el caso L > 1, pruebe que $1/a_n \to 0$.

- 20. Como aplicación de lo anterior, si |r| < 1 halle $\lim_{n \to \infty} nr^n$.
- 21. Sea $q_n = \sum_{k=1}^n \frac{1}{k^2}$. Prueba que la sucesión $\{q_n\}$ es de Cauchy.
- 22. Pruebe que $\left\{\frac{n}{n^6 5n^3 2n 1}\right\}$ converge.
- 23. Demuestre que la sucesión definida por $a_n = \frac{2n^7 + 5n}{3n^7 5n^2 + 12}$ converge.
- 24. Demuestre, usando la definición, que $\{\frac{5-2n-3n^2}{n^2-4n+8}\}$ converge.
- 25. Calcule $\lim_{n \to \infty} \frac{1 + 2^2 + 3^2 + \dots + n^2}{n^3}$.
- 26. Suponga que la sucesión $\{b_n\}$ dada por $b_n = \sum_{k=1}^n \frac{1}{k!}$ converge a la constante $A \in \mathbb{R}$. Encuentre el límite (en términos de la constante A) de la sucesión $\{a_n\}$ dada por

$$a_n = \sum_{k=1}^n \frac{3k^2 - 4k + 2}{k!}.$$

- 27. Demuestre que la sucesión definida por $x_1 = 3$, $x_{n+1} = \frac{4(1+x_n)}{4+x_n}$ converge y encuentre su límite.
- 28. Sea $\{b_n\}$ una sucesión de reales tal que $b_{n+1} b_n \to x$ cuando $n \to \infty$. Pruebe que $\frac{b_n}{n} \to x$ cuando $n \to \infty$.
- 29. Sean $\{r_n\}$ y $\{s_n\}$ sucesiones de números racionales que convergen a $r \in \mathbb{Q}$ y $s \in \mathbb{Q}$ respectivamente y tales que existe $N \in \mathbb{N}$ de manera que $r_n \leq s_n$ para todo $n \geq N$. Pruebe que $r \leq s$.
- 30. Demuestre, usando la definición, que la sucesión $\{\frac{n^2-n+1}{2n^3-n^2-1}\}$ converge a cero.
- 31. Se define la sucesión de reales de manera recursiva, así:

$$x_1 = 1, \ x_2 = 2, \ x_n = \frac{1}{2}(x_{n-1} + x_{n-2}) \text{ para } n \ge 3.$$

Pruebe que $\{x_n\}$ es una sucesión de Cauchy.

Sugerencia: Halle una fórmula para $|x_n - x_{n+1}|$.

- 32. Sea $a_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}$. Pruebe que $\{a_n\}$ es una sucesión de Cauchy.
- 33. Suponga que la sucesión de reales definida por $t_n = \sum_{k=1}^n a_k^2$ es de Cauchy. Pruebe que $\{b_n\}$ dada por $b_n = \sum_{k=1}^n \frac{a_k}{k}$ es una sucesión de Cauchy.
- 34. Sea $a_k \geq 0$ para todo $k \in \mathbb{N}$ y definamos $s_n = \sum_{k=1}^n a_k$. Demuestre que si la sucesión $\{s_n\}$ converge entonces la sucesión $\{t_n\}$ dada por

$$t_n = \sum_{k=1}^n \frac{a_k}{1 + a_k}$$

converge.