Universidad Nacional de Colombia Introducción al análisis funcional Segundo parcial Abril 25 de 2016

Todo debe estar bien justificado

- 1. (20%) Demuestre que el dual de l^1 es isomorfo a l^{∞} .
- 2. (20%) Definamos $T: l^{\infty} \to l^{\infty}$, para $x = (x_1, x_2, \ldots) \in l^{\infty}$, por

$$Tx = \left(\frac{n}{2n+1}x_n\right)_n.$$

Pruebe que $T \in \mathcal{L}(l^{\infty})$ y calcule ||T||.

- 3. (20%) Sean X un espacio con producto interno y $M \subset X$ no vacío. Pruebe que (a) M^{\perp} es un subespacio cerrado de X y (b) $(\overline{M})^{\perp} = M^{\perp}$.
- 4. (20%) Pruebe el siguiente teorema (**vector de norma mínima**): Sean X un espacio con producto interno y C un subconjunto no vacío de X, convexo y completo. Entonces para cada $x \in X$ existe un único $y \in C$ tal que ||x y|| = d(x, C). Debe especificar donde son usadas las hipótesis.
- 5. (20%) Demuestre que $Y := \{y = (y_n)_n \in l^2 : y_{2n} = 0\}$ es un subespacio cerrado de l^2 y encuentre Y^{\perp} .
- 6. (20%) Mostrar que en un espacio con producto interior, $x \perp y$ si y solo si $||x + \alpha y|| \ge ||x||$ para todo $\alpha \in \mathbb{K}$.

Seleccione 5 preguntas